The scattering matrix for a generalgl(2) spin chain

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattering matrix for a general gl(2) spin chain

We study the general L0-regular gl(2) spin chain, i.e. a chain where the sites {i, i + L0, i + 2L0, . . . } carry the same arbitrary representation (spin) of gl(2). The basic example of such chain is obtained for L0 = 2, where we recover the alternating spin chain. Firstly, we review different known results about their integrability and their spectrum. Secondly, we give an interpretation in ter...

متن کامل

The QCD spin chain S matrix

Beisert et al. have identified an integrable SU(2, 2) quantum spin chain which gives the one-loop anomalous dimensions of certain operators in large Nc QCD. We derive a set of nonlinear integral equations (NLIEs) for this model, and compute the scattering matrix of the various (in particular, magnon) excitations. 1 Department of Physics, Ewha Womans University, Seoul 120-750, South Korea 2 Phys...

متن کامل

Factorization of Multiparticle Scattering in the Heisenberg Spin Chain

We give an explicit proof within the framework of the Bethe Ansatz/string hypothesis of the factorization of multiparticle scattering in the antiferromagnetic spin-12 Heisenberg spin chain, for the case of 3 particles.

متن کامل

Continuum in the spin-excitation spectrum of a haldane chain observed by neutron scattering in CsNiCl3.

The spin-excitation continuum, expected to dominate the low-energy fluctuation spectrum in the Haldane spin chain around the Brillouin zone center, q = 0, is directly observed by inelastic magnetic neutron scattering in the S = 1 quasi-1D antiferromagnet CsNiCl3. We find that the single mode approximation fails, and that a finite energy width appears in the dynamic correlation function S(q,omeg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment

سال: 2009

ISSN: 1742-5468

DOI: 10.1088/1742-5468/2009/12/p12003